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LETTER TO THE EDITOR 

The operator content of the exactly integrable SU(N) magnets 
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t Departamento de Fisica, Universidade Federal de S5o Carlos, Slo Carlos, Caixa Postal 
676, 13560 SP, Brazil 
$ University of California, Department of Physics, Santa Barbara, CA 93106, USA 

Received 17 July 1990 

Abstract. The operator content of the exactly integrable models associated with the SU( N)  
Lie algebras, with periodic boundaries, are studied. Our results were obtained from a 
numerical and analytical analysis of the associated Bethe-ansatz equations. The resulting 
spectra indicate that the ferromagnetic and antiferromagnetic models have different operator 
content for N > 2, being realizations of distinct modular invariant solutions. 

Conformal invariance has recently emerged as one of the most relevant concepts in 
the study of the critical properties of (1 + 1)-systems [ 1-31. The possible universality 
classes of critical behaviour are labelled by a dimensionless number c, which is the 
central charge of the associated (Virasoro) algebra [l-31. An important method for 
testing the predictions for conformal invariance are the exactly integrable models [4]. 
It is known that associated for each p (1,2,3, . . .) representation of the ADE Lie algebras 
there exists an anisotropic exactly integrable quantum chain [4]. The spectrum of these 
Hamiltonians, with L sites, associated with a given algebra of rank r can be block 
diagonalized into disjoint sectors labelled by the numbers N ,  of particles of colour a 
(1,2,3, . . . , r ) .  The eigenenergies in a given sector characterized by the set { N,}  are 
given by: 

where E = +1 (-1) for the ferromagnetic (antiferromagnetic) models and A," ( a  = 
1,2 , .  . . , r ;  j = 1,2, .  . . , N , )  are the solutions of the associated Bethe-ansatz equations 

where 

sinh y ( x  - iup/2) 
sinh y ( x  + i a p / 2 )  ' L(x)  = (3) 

The simple roots of the underlying ADE Lie algebra are denoted by cy, (a  = 1,2, , . . , r )  
and the highest weight of the representation by a. 
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The calculation of the central charge of these integrable models [5] leads to the 
conjecture that they are the lattice realizations of quantum field theories satisfying a 
Kac-Moody algebra [ 6 ]  with central charge c = p  dim G / ( h  + p )  where h is the dual 
Coxeter number of the associated group G. The calculation of the full operator content 
for these models is in general more difficult. Some partial results are known for the 
models related with the fundamental representation ( p  = 1 )  of the ADE Lie algebras 
[7] and in the SU(2) case the full operator content was calculated for arbitrary 
representations [%lo]. In this letter we present, for periodic chains, a general study 
of the full operator content of the integrable models associated with the fundamental 
representations of the ADE Lie algebras. We verify that in the antiferromagnetic regime 
( E  = - 1 )  there exist, in opposition to early results [7], selection rules where many 
dimensions associated with excited states are forbidden in the operator content of 
these models. We also verify that the topology of zeros of the associated Bethe-ansatz 
equations are in general different in the ferromagnetic ( E  = + 1 )  and antiferromagnetic 
( E  = - 1 ) .  These results are unexpected since these differences and selection rules do 
not occur in the SU(2) case [8,9]. 

We concentrate most of our analysis on the exactly integrable SU( N )  Heisenberg 
chains, which are associated with the A series of Lie algebras. The Hamiltonian of 
these S U ( N )  models is given by [4] 

H N  = E  2 ZYZ~+,+cos(y)  ZYZY+l+isin(y) pl,Z;‘Zy+l (4) ) 
N N 

/ = I  L ( N  I . J = l  , = I  1.1 = 1 
I + I  

where Z& = SlkSJr, p,] = sign( i - j )  + ( i  - j ) /  N ;  i, j = 1,2,  . . . , N and 0 c y s T. The 
eigenenergies of (4) are given in terms of the zeros { A , ” }  of (2), where now R and a, 
( a  = 1 , 2 , .  . . , N - 1 )  are the highest weight and roots of the S U ( N )  algebra. Our 
analytical and numerical analyses of (2) show us that the picture of zeros { A , ” }  associated 
with the ground state is different for the antiferromagnetic ( E  = - 1 )  and ferromagnetic 
( E  = 1 )  regimes. In the E = -1  case these zeros { A Y }  are real, forming a sea of particles?, 
while in the E = + l  case the zeros {A,”}  with a = 2 , 4 , .  . . are real (particles) and those 
with a = 1 , 3 , .  . . , have an imaginary part 7r/2y (antiparticle?). 

The conformal anomaly as well as the anomalous dimensions of the operators 
governing the critical fluctuations can be calculated from the large-L. behaviour of the 
eigenenergies [3]. We calculated these corrections, for the ferromagnetic regime, by 
using an efficient analytical method [ 111.  These corrections in the antiferromagnetic 
case were calculated previously [7]. The central charge for the both cases ( E  = * l )  is 
c = N - 1 and the conformal dimensions in the sector labelled by n = (n,, n2,. . . , n N - l )  
have the general structure 

N - l  1 N-1 

where C is the S U ( N )  Cartan matrix and in the antiferromagnetic (ferromagnetic) 
case xp = (T  - y ) / 2 7 r  ( x p  = y / 2 7 r ) .  The vectors n = (n,, n2,. . . , n N - l )  and m 
( m j  , mz,  . . . , m N - , ) ,  with n i ,  mi E 2, characterize the dimensions and are generalizations 
of the spin-wave and vorticity numbers occurring in the SU(2) case [8]. 

t We denote by particle a real root AY of the Bethe-ansatz equations and by antiparticle a root with imaginary 
part -12 y. 
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However by using only the analytical method above we cannot, in a closed form, 
make any conclusions about the operator content because the method is based on an 
a priori assumption of the existence of an excited state characterized by the vectors 
(n ,  m). In order to verify which excitations do exist we diagonalized numerically the 
Hamiltonian (4), for small chains, and compared it with the numerical solutions of 
the Bethe-ansatz equations (2). In table 1 we show some of our numerical results for 
the lowest dimensions in the ferromagnetic and antiferromagnetic SU(3) chains. Our 
numerical analysis show us that in the antiferromagnetic case the ground state is 
associated in ( 5 )  with the vectors (n,  m )  = (0,O; 0,O) while the lowest non-zero 
dimension is associated with ( n ,  m) = (1 , l ;  1, -1) which means that, for example, the 
excitation corresponding to (n, m )  = (1, 1; 0,O) is forbidden in the antiferromagnetic 
case. On the other hand, in the ferromagnetic case, the lowest excitation also occurs 
in the sector labelled by n, = n, = 1 but is now associated with (n, m )  = (1, 1; 0, 0), and 
consequently the cases E = Fl have different operator contents. This difference is a 
consequence of the distinct topologies of the zeros of the Bethe-ansatz equations. In 
the ferromagnetic (antiferromagnetic) chain the excitations occur above a background 
of particles (particles/antiparticles). 

Table 1. Finite-size estimators associated with several scaling dimensions of the ferromag- 
netic (X,) and antiferromagnetic (Xaf) SU(3) chain for y = n/4.  The exact values are given 
by (5). 

6 0.606 0876 0.936 2858 0.824 9789 
24 0.597 3253 1.035 3612 1.241 6630 
36 0.597 2173 1.038 9422 1.279 3576 
48 0.597 1994 1.041 6622 1.297 3115 
54 0.597 1978 1.041 4916 1.303 1567 
extrapolated 0.597 22 (1) 1.041 66 (5) 1.347 2 ( 1 )  
exact 0.597 2 1.041 6 1.347 2 

j X,,(2,2; 0,O) X,(1,2; 090) &(I ,  1; 0,O) 

6 1.375 7025 0.331 2083 0.133 8959 
24 1.487 2064 0.359 8736 0.125 5639 
36 1.493 7365 0.364 591 1 0.125 2485 
48 1.496 2510 0.367 0741 0.125 1395 
54 1.496 9654 0.367 9200 0.125 1101 
extrapolated 1.500 0 (2) 0.375 0 (5) 0.125 00 (4) 
exact 1.5 0.375 0.125 

We have also calculated numerically several excitations for SU(4) and SU(5) 
models. The lowest dimension is given by 

for E = -1 
N - 2  1 2 '[( N ( l - y / r )  

x=- I--  + 

and 
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Again we obtain different results for the ferromagnetic and antiferromagnetic chains. 
It is interesting to observe that in the isotropic limit y + O  the formula (6), for the 
E = -1  regime, is precisely the lowest dimension appearing in the S U ( N )  Wess- 
Zumino-Witten-Novikov models [6]. Our numerical analysis for the excitation spec- 
trum indicates that while in the ferromagnetic case vectors (n, m )  are arbitrary with 
integer coordinates, in the antiferromagnetic case these vectors, for N > 2 ,  have to 
satisfy some constraints, i.e. the integers ( ni - mi,  i = 1,2, . . . , N - 1 )  should be even 
numberst. Consequently we have the result that for N > 2  the operator content for 
the antiferromagnetic and ferromagnetic chains are associated with distinct modular 
invariant solutions. 

In the case of models associated to SU(2) algebra ( c  = l ) ,  it has been shown [8,9, 121 
that the conformal anomaly and the operator content of other models (c  < 1 )  can be 
obtained by continuously changing the boundary conditions. Motivated by this fact 
we considered the SU( N )  Hamiltonian (4) with the following boundary conditions, 
compatible with the torus 

zy+, = 2:' i , j=1,2 ,..., N-1. 

These boundary conditions preserve the SU(N)  algebra of the matrices Z" and 
are specified by the angles O s  41,  4 2 , .  , . , 4,,-, s T. The numerical and analytical 
analyses of (4) show us that analogous to the SU(2) case [8,9,12] the effect of these 
boundary conditions is to increase the vectors m in ( 5 )  and the scaling dimensions 
are now given by X(n, m + &/T), where 4 = (4,,  42, .  . . , C$,,-,). These boundary 
conditions correspond in the continuum model to the introduction of external charges 
at infinity [l], because the ground-state energy, for arbitrary &, is related to a model 
with conformal anomaly c (&)  = N - 1 - 12X(O, &/T). If we now choose the anisotropy 
y = r / ( m +  1) (m = 3 , 4 , .  . .) and 4, = C $ 2 = .  . . = = 2 y  we obtain 

N(N2-1) 
c =  ( N -  1 ) -  

( m +  N - 2 ) ( m  + N - 1 )  (9) 

which is the unitary series associated with the S U ( N )  group [13]. Also the scaling 
dimensions associated with these theories [ 131 and generalized parafermionic theories 
[14] are obtained from the mass-gap amplitudes of the excited states with respect to 
the ground state of the &-boundary Hamiltonian. Our analyses also show that models 
associated with higher representations ( p  > 1 )  of the S U ( N )  algebra, with boundary 
conditions (8) are related to models having conformal anomaly c (&)  = 
[ p ( N 2 - l ) / ( p + N ) ] - 1 2 p X ( 0 , & / . i r ) ,  where now x p = ( ~ - p y ) / 2 r .  Choosing y =  
r / (  m + p )  ( m = 3,4,  . . .) and 4, = 42 = . . . = 4 N - ,  = 27 we now obtain the conformal 
anomaly of the general higher level SU( N )  conformal series [ 131. 

As a final remark we mention that we have also investigated the exactly integrable 
models associated with the O(6) and E,  Lie algebras. In particular we note the same 

t From earlier calculations [8] this restriction does not exist for the SU(2)  model (XXZ chain). Also the 
limit N = 2 for the general formula ( 5 ) ,  taking C = 2, does not reproduce the well known results, therefore 
the case N = 2 should be considered separately. 



Letter to the Editor L1083 

difference between the ferromagnetic and antiferromagnetic regimes. Our first results 
strongly suggest that the operator content of the models associated to the SU( N)  
algebra (A algebra) can be extended to the D-E series. 

This work was supported in part by CNPq-Brazil, Fundacio de Amparo A Pesquisa 
do Estado de S Paulo (Fapesp) and by the NSF Grant PHY 86-14185. One of us 
(MJM) thanks V Catunda for encouragement and important comments. 
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