The operator content of the exactly integrable $\operatorname{SU}(\mathrm{N})$ magnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L1079
(http://iopscience.iop.org/0305-4470/23/21/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:23

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The operator content of the exactly integrable $\mathrm{SU}(\mathbf{N})$ magnets

Francisco Castilho Alcaraz \dagger and Márcio José Martins $\ddagger \S \|$
\dagger Departamento de Física, Universidade Federal de São Carlos, São Carlos, Caixa Postal 676, 13560 SP, Brazil
\ddagger University of California, Department of Physics, Santa Barbara, CA 93106, USA

Received 17 July 1990

Abstract

The operator content of the exactly integrable models associated with the $\mathrm{SU}(N)$ Lie algebras, with periodic boundaries, are studied. Our results were obtained from a numerical and analytical analysis of the associated Bethe-ansatz equations. The resulting spectra indicate that the ferromagnetic and antiferromagnetic models have different operator content for $N>2$, being realizations of distinct modular invariant solutions.

Conformal invariance has recently emerged as one of the most relevant concepts in the study of the critical properties of $(1+1)$-systems [1-3]. The possible universality classes of critical behaviour are labelled by a dimensionless number c, which is the central charge of the associated (Virasoro) algebra [1-3]. An important method for testing the predictions for conformal invariance are the exactly integrable models [4]. It is known that associated for each $p(1,2,3, \ldots)$ representation of the ADE Lie algebras there exists an anisotropic exactly integrable quantum chain [4]. The spectrum of these Hamiltonians, with L sites, associated with a given algebra of rank r can be block diagonalized into disjoint sectors labelled by the numbers N_{a} of particles of colour a $(1,2,3, \ldots, r)$. The eigenenergies in a given sector characterized by the set $\left\{N_{a}\right\}$ are given by:

$$
\begin{equation*}
E=\varepsilon \sum_{j=1}^{m_{1}} \frac{\sin (p \gamma)}{\cos (p \gamma)-\cosh \left(2 \lambda_{j}^{1}\right)} \tag{1}
\end{equation*}
$$

where $\varepsilon=+1(-1)$ for the ferromagnetic (antiferromagnetic) models and $\lambda_{j}^{a}(a=$ $1,2, \ldots, r ; j=1,2, \ldots, N_{a}$) are the solutions of the associated Bethe-ansatz equations

$$
\begin{equation*}
\left(f_{\left(\Omega, \alpha_{a}\right)}\left(\lambda_{i}^{a}\right)\right)^{L}=-\prod_{b=1}^{r} \prod_{j=1}^{m_{b}} f_{\left(\alpha_{a}, \alpha_{h}\right)}\left(\lambda_{i}^{a}-\lambda_{j}^{b}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{a}(x)=\frac{\sinh \gamma(x-i a p / 2)}{\sinh \gamma(x+i a p / 2)} \tag{3}
\end{equation*}
$$

The simple roots of the underlying ade Lie algebra are denoted by $\alpha_{a}(a=1,2, \ldots, r)$ and the highest weight of the representation by Ω.
§ On leave from: Departamento de Física, Universidade Federal de São Carlos, CP 676, São Carlos 13560, Brazil.
|| Electronic mail address: martins@ucsbap.ucsb.edu

The calculation of the central charge of these integrable models [5] leads to the conjecture that they are the lattice realizations of quantum field theories satisfying a Kac-Moody algebra [6] with central charge $c=p \operatorname{dim} \mathrm{G} /(h+p)$ where h is the dual Coxeter number of the associated group G. The calculation of the full operator content for these models is in general more difficult. Some partial results are known for the models related with the fundamental representation ($p=1$) of the ADE Lie algebras [7] and in the $S U(2)$ case the full operator content was calculated for arbitrary representations [8-10]. In this letter we present, for periodic chains, a general study of the full operator content of the integrable models associated with the fundamental representations of the ADE Lie algebras. We verify that in the antiferromagnetic regime ($\varepsilon=-1$) there exist, in opposition to early results [7], selection rules where many dimensions associated with excited states are forbidden in the operator content of these models. We also verify that the topology of zeros of the associated Bethe-ansatz equations are in general different in the ferromagnetic ($\varepsilon=+1$) and antiferromagnetic $(\varepsilon=-1)$. These results are unexpected since these differences and selection rules do not occur in the $\mathrm{SU}(2)$ case $[8,9]$.

We concentrate most of our analysis on the exactly integrable $\operatorname{SU}(N)$ Heisenberg chains, which are associated with the A series of Lie algebras. The Hamiltonian of these $\mathrm{SU}(N)$ models is given by [4]
$H_{N}=\varepsilon \sum_{l=1}^{L}\left(\sum_{\substack{i, j=1 \\ i \neq j}}^{N} Z_{l}^{i j} Z_{l+1}^{j i}+\cos (\gamma) \sum_{i=1}^{N} Z_{l}^{i i} Z_{l+1}^{i i}+\mathrm{i} \sin (\gamma) \sum_{i, j=1}^{N} \mu_{i j} Z_{i}^{i i} Z_{l+1}^{i j}\right)$
where $Z_{k, t}^{i j}=\delta_{i k} \delta_{j t}, \mu_{i j}=\operatorname{sign}(i-j)+(i-j) / N ; i, j=1,2, \ldots, N$ and $0 \leqslant \gamma \leqslant \pi$. The eigenenergies of (4) are given in terms of the zeros $\left\{\lambda_{j}^{a}\right\}$ of (2), where now Ω and α_{a} $(a=1,2, \ldots, N-1)$ are the highest weight and roots of the $\mathrm{SU}(N)$ algebra. Our analytical and numerical analyses of (2) show us that the picture of zeros $\left\{\lambda_{j}^{a}\right\}$ associated with the ground state is different for the antiferromagnetic ($\varepsilon=-1$) and ferromagnetic ($\varepsilon=1$) regimes. In the $\varepsilon=-1$ case these zeros $\left\{\lambda_{j}^{a}\right\}$ are real, forming a sea of particles \dagger, while in the $\varepsilon=+1$ case the zeros $\left\{\lambda_{j}^{a}\right\}$ with $a=2,4, \ldots$ are real (particles) and those with $a=1,3, \ldots$, have an imaginary part $\pi / 2 \gamma$ (antiparticle \dagger).

The conformal anomaly as well as the anomalous dimensions of the operators governing the critical fluctuations can be calculated from the large- L behaviour of the eigenenergies [3]. We calculated these corrections, for the ferromagnetic regime, by using an efficient analytical method [11]. These corrections in the antiferromagnetic case were calculated previously [7]. The central charge for the both cases $(\varepsilon= \pm 1)$ is $c=N-1$ and the conformal dimensions in the sector labelled by $\boldsymbol{n}=\left(n_{1}, n_{2}, \ldots, n_{N-1}\right)$ have the general structure

$$
\begin{equation*}
X(n, m)=\frac{x_{p}}{2} \sum_{i, j=1}^{N-1} n_{i} C_{i j} n_{j}+\frac{1}{8 x_{p}} \sum_{i, j=1}^{N-1} m_{i}\left(C^{-1}\right)_{i j} m_{j} \tag{5}
\end{equation*}
$$

where C is the $\operatorname{SU}(N)$ Cartan matrix and in the antiferromagnetic (ferromagnetic) case $x_{p}=(\pi-\gamma) / 2 \pi \quad\left(x_{p}=\gamma / 2 \pi\right)$. The vectors $n \equiv\left(n_{1}, n_{2}, \ldots, n_{N-1}\right)$ and $m \equiv$ ($m_{1}, m_{2}, \ldots, m_{N-1}$), with $n_{i}, m_{i} \in Z$, characterize the dimensions and are generalizations of the spin-wave and vorticity numbers occurring in the $\operatorname{SU}(2)$ case [8].

[^0]However by using only the analytical method above we cannot, in a closed form, make any conclusions about the operator content because the method is based on an a priori assumption of the existence of an excited state characterized by the vectors (n, m). In order to verify which excitations do exist we diagonalized numerically the Hamiltonian (4), for small chains, and compared it with the numerical solutions of the Bethe-ansatz equations (2). In table 1 we show some of our numerical results for the lowest dimensions in the ferromagnetic and antiferromagnetic $\operatorname{SU}(3)$ chains. Our numerical analysis show us that in the antiferromagnetic case the ground state is associated in (5) with the vectors $(n, m)=(0,0 ; 0,0)$ while the lowest non-zero dimension is associated with $(n, m)=(1,1 ; 1,-1)$ which means that, for example, the excitation corresponding to $(\boldsymbol{n}, \boldsymbol{m})=(1,1 ; 0,0)$ is forbidden in the antiferromagnetic case. On the other hand, in the ferromagnetic case, the lowest excitation also occurs in the sector labelled by $n_{1}=n_{2}=1$ but is now associated with ($\left.\boldsymbol{n}, \boldsymbol{m}\right)=(1,1 ; 0,0)$, and consequently the cases $\varepsilon=\mp 1$ have different operator contents. This difference is a consequence of the distinct topologies of the zeros of the Bethe-ansatz equations. In the ferromagnetic (antiferromagnetic) chain the excitations occur above a background of particles (particles/antiparticles).

Table 1. Finite-size estimators associated with several scaling dimensions of the ferromagnetic (X_{f}) and antiferromagnetic ($\left.X_{\mathrm{af}}\right) \mathrm{SU}(3)$ chain for $\gamma=\pi / 4$. The exact values are given by (5).

j	$X_{\mathrm{af}}(1,1 ;-1,1)$	$\boldsymbol{X}_{\mathrm{af}}(1,1 ;-1,-1)$	$\boldsymbol{X}_{\mathrm{af}}(1,2 ;-1,0)$
6	0.6060876	0.9362858	0.8249789
24	0.5973253	1.0353612	1.2416630
36	0.5972173	1.0389422	1.2793576
48	0.5971994	1.0416622	1.2973115
54	0.5971978	1.0414916	1.3031567
extrapolated	$0.59722(1)$	$1.04166(5)$	$1.3472(1)$
exact	0.5972	1.0416	$1.347 \dot{2}$
j	$X_{\mathrm{af}}(2,2 ; 0,0)$	$X_{\mathrm{f}}(1,2 ; 0,0)$	$X_{\mathbf{f}}(1,1 ; 0,0)$
6	1.3757025	0.3312083	0.1338959
24	1.4872064	0.3598736	0.1255639
36	1.4937365	0.3645911	0.1252485
48	1.4962510	0.3670741	0.1251395
54	1.4969654	0.3679200	0.1251101
extrapolated	$1.5000(2)$	$0.3750(5)$	$0.12500(4)$
exact	1.5	0.375	0.125

We have also calculated numerically several excitations for $\mathrm{SU}(4)$ and $\mathrm{SU}(5)$ models. The lowest dimension is given by

$$
\begin{equation*}
X=\frac{1}{2}\left[\left(1-\frac{\gamma}{\pi}\right)+\frac{N-2}{N(1-\gamma / \pi)}\right] \quad \text { for } \varepsilon=-1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
X=\frac{1}{2} \frac{\gamma}{\pi} \quad \text { for } \varepsilon=1 \tag{7}
\end{equation*}
$$

Again we obtain different results for the ferromagnetic and antiferromagnetic chains. It is interesting to observe that in the isotropic limit $\gamma \rightarrow 0$ the formula (6), for the $\varepsilon=-1$ regime, is precisely the lowest dimension appearing in the $\operatorname{SU}(N)$ Wess-Zumino-Witten-Novikov models [6]. Our numerical analysis for the excitation spectrum indicates that while in the ferromagnetic case vectors ($\boldsymbol{n}, \boldsymbol{m}$) are arbitrary with integer coordinates, in the antiferromagnetic case these vectors, for $N>2$, have to satisfy some constraints, i.e. the integers ($n_{i}-m_{i}, i=1,2, \ldots, N-1$) should be even numbers \dagger. Consequently we have the result that for $N>2$ the operator content for the antiferromagnetic and ferromagnetic chains are associated with distinct modular invariant solutions.

In the case of models associated to $\operatorname{SU}(2)$ algebra $(c=1)$, it has been shown [8, 9, 12] that the conformal anomaly and the operator content of other models ($c<1$) can be obtained by continuously changing the boundary conditions. Motivated by this fact we considered the $\operatorname{SU}(N)$ Hamiltonian (4) with the following boundary conditions, compatible with the torus

$$
\begin{align*}
& Z_{L+1}^{i, j}=\exp \left(\mathrm{i} \sum_{i}^{j-1} \phi_{k}\right) Z_{\mathrm{i}}^{i, j} \quad i<j \\
& Z_{\dot{L}+1}^{i, j}=\exp \left(-\mathrm{i} \sum_{j}^{i-1} \phi_{k}\right) Z_{i}^{i, j} \quad i>j \tag{8}\\
& Z_{\dot{L}+1}^{i, i}=Z_{i}^{i, i} \quad i, j=1,2, \ldots, N-1 .
\end{align*}
$$

These boundary conditions preserve the $\operatorname{SU}(N)$ algebra of the matrices $Z^{i j}$ and are specified by the angles $0 \leqslant \phi_{1}, \phi_{2}, \ldots, \phi_{N-1} \leqslant \pi$. The numerical and analytical analyses of (4) show us that analogous to the $\operatorname{SU}(2)$ case $[8,9,12]$ the effect of these boundary conditions is to increase the vectors \boldsymbol{m} in (5) and the scaling dimensions are now given by $\boldsymbol{X}(\boldsymbol{n}, \boldsymbol{m}+\boldsymbol{\phi} / \boldsymbol{\pi})$, where $\boldsymbol{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{N-1}\right)$. These boundary conditions correspond in the continuum model to the introduction of external charges at infinity [1], because the ground-state energy, for arbitrary ϕ, is related to a model with conformal anomaly $c(\phi)=N-1-12 X(0, \phi / \pi)$. If we now choose the anisotropy $\gamma=\pi /(m+1)(m=3,4, \ldots)$ and $\phi_{1}=\phi_{2}=\ldots=\phi_{N-1}=2 \gamma$ we obtain

$$
\begin{equation*}
c=(N-1)-\frac{N\left(N^{2}-1\right)}{(m+N-2)(m+N-1)} \tag{9}
\end{equation*}
$$

which is the unitary series associated with the $\operatorname{SU}(N)$ group [13]. Also the scaling dimensions associated with these theories [13] and generalized parafermionic theories [14] are obtained from the mass-gap amplitudes of the excited states with respect to the ground state of the ϕ-boundary Hamiltonian. Our analyses also show that models associated with higher representations $(p>1)$ of the $S U(N)$ algebra, with boundary conditions (8) are related to models having conformal anomaly $c(\phi)=$ $\left[p\left(N^{2}-1\right) /(p+N)\right]-12 p X(0, \phi / \pi)$, where now $x_{p}=(\pi-p \gamma) / 2 \pi$. Choosing $\gamma=$ $\pi /(m+p)(m=3,4, \ldots)$ and $\phi_{1}=\phi_{2}=\ldots=\phi_{N-1}=2 \gamma$ we now obtain the conformal anomaly of the general higher level $\mathrm{SU}(N)$ conformal series [13].

As a final remark we mention that we have also investigated the exactly integrable models associated with the $O(6)$ and E_{6} Lie algebras. In particular we note the same

[^1]difference between the ferromagnetic and antiferromagnetic regimes. Our first results strongly suggest that the operator content of the models associated to the $\operatorname{SU}(N)$ algebra (A algebra) can be extended to the $D-E$ series.

This work was supported in part by CNPq-Brazil, Fundacão de Amparo à Pesquisa do Estado de S Paulo (Fapesp) and by the NSF Grant PHY 86-14185. One of us (MJM) thanks V Catunda for encouragement and important comments.

References

[1] Belavin A A, Poyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333
[2] Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 521575
[3] Cardy J L Phase Transitions and Critical Phenomena vol 11, ed C Domb and J Lebowitz (New York: Academic) p 55
[4] Ogievetsky E I, Reshetikin N Yu and Wiegmann P 1987 Nucl. Phys. B 28045
Reshetikin N Yu 1985 Teor. Mat. Fiz. 12347
Pokrosvskii S V and Tsvelik A M 1987 Sov. Phys.-JETP 661275
[5] Destri C and de Vega H J 1988 Phys. Lett. 201B 261
Alcaraz F C and Martins M J 1988 J. Phys. A: Math. Gen. 21 L381, 4397; 1989 J. Phys. A: Math. Gen. 22 L865
Martins M J 1990 Phys. Lett. 145A 127
[6] Knizhnik V and Zamolodchikov A B 1984 Nucl. Phys. B 24783
[7] Suzuki J 1988 J. Phys. A: Math. Gen. 211175 de Vega H J 1988 J. Phys. A: Math. Gen. 21 L1089
[8] Alcaraz F C, Barber M N and Batchelor M T 1987 Phys. Rev. Lett. 58 771; 1988 Ann. Phys., NY 182 220
[9] Alcaraz F C and Martins M J 1988 Phys. Rev. Lett. 61 1529; 1989 Phys. Rev. Lett. 63 708; 1989 J. Phys. A: Math. Gen. 221829
[10] di Francesco P, Sauler H and Zuber J-B 1988 Nucl. Phys. B 300393
[11] de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251439
Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L97
[12] Alcaraz F C, Baake M, Grimm U and Rittenberg V 1989 J. Phys. A: Math. Gen. 22 L5 Alcaraz F C, Grimm U and Rittenberg V 1989 Nucl. Phys. B 316735
[13] Kastor D, Martinec E and Qiu Z 1988 Phys. Rev. Lett. B 200434
Bagger J, Nemechansky D and Yankielowicz S 1988 Phys. Rev. Lett. 60389
Ravanini F 1988 Mod. Phys. Lett. A 3271
[14] Fateev A V and Lykyanov S 1988 Int. J. Mod. Phys. A 3507

[^0]: + We denote by particle a real root λ_{j}^{a} of the Bethe-ansatz equations and by antiparticle a root with imaginary part $\pi / 2 \gamma$.

[^1]: † From earlier calculations [8] this restriction does not exist for the $\mathrm{SU}(2)$ model ($X X Z$ chain). Also the limit $N=2$ for the general formula (5), taking $C=2$, does not reproduce the well known results, therefore the case $N=2$ should be considered separately.

